Analysis of the causes of bridge crane accidents and safety management
橋式起重機事故原因分析及安全管理
Analysis of the causes of bridge crane accidents and safety management
引發(fā)橋式起重機起重吊運作業(yè)事故主要危險因素有:未發(fā)信號,使用不合格吊具超載吊運,安全防護裝置失靈,指揮信號不明或亂指揮,吊物捆綁不牢,歪拉斜掛吊運,棱角快口沒有襯墊等。在對314起起重機事故按機型分類的統(tǒng)計中,橋式起重機發(fā)生事故數量是59起,所占比例為18.8%,事故發(fā)生率是所有起重機械里面最高的。因此必須加強對起重作業(yè)人員的安全操作規(guī)程和規(guī)章制度教育,提高起重作業(yè)人員的安全素質。
Cause of bridge crane hoisting and lifting operation accident risk factors: no signal, the use of substandard hoist overload lifting, safety protection device failure, the command signal is unknown or arbitrary command, hanging binding is not strong, crooked pull over the lifting, angular openings no liner etc.. In 314 crane accidents according to statistical models classification, bridge crane accident number is 59, the proportion of 18.8%, the accident rate is the highest of all hoisting machinery. It is necessary to strengthen the operation rules and regulations on safety education for lifting personnel, improve the safety quality of lifting operation personnel.
1起重機的機械事故
1 crane machine accidents
起重傷害與事故是指起重機械在作業(yè)過程中,由機具、吊物等所引起的人身傷亡或設備損壞事故。據統(tǒng)計,在冶金、機電、鐵路、港口、建筑等生產部門,起重機械所發(fā)生的事故占有很大比例,高達25%左右,其中死亡事故占15%左右。如表1所示,其中在吊具打擊中,有3起脫鉤事故,占吊具打擊事故的50%;在斷繩事故中,有5起過卷事故,占斷繩事故的38.5%;在108起事故中,有2起是超載事故,占事故總數的1.9%。據統(tǒng)計結果可知,在108起典型起重傷害事故中,吊物脫落打擊事故占總事故數的25%,其傷亡人數占總傷亡人數的20.7%,居首位;其次是斷繩傷害事故,分別為12%和12.1%;居第3位的是擠壓傷害事故,分別為12%和9.3%。由此可見,吊物脫落打擊、斷繩和擠壓傷害事故是起重機械作業(yè)過程中的多發(fā)性事故。
Lifting injury and accident refers to the hoisting machinery in the process of the operation, caused by a machine, hanging, personal injury or equipment damage accidents. According to statistics, in metallurgy, machinery, railway, port, building the production department, the occurrence of heavy machinery accident occupies a large proportion, as high as 25%, which accounted for about 15% of deaths. As shown in Table 1, which in the sling blow, 3 blow from accidents, accounting for 50% of accident in a sling; rope break accident, there are 5 overwinding accident, accounting for rope-broken accident of 38.5%; in 108 cases, 2 were overload accident, accounting for 1.9% of the total number of accidents. According to the statistical results, in 108 typical lifting injury accident, hanging off against accidents accounted for the total number of accidents 25%, the death toll accounts for the total of 20.7% casualties, the first; followed by the rope break accident, respectively 12% and 12.1%; ranked third is crush injury accident, respectively. 12% and 9.3%. Thus, the hanging off the blow, rope and crush injury is the hoisting machinery in the process of operation of multiple accidents.
2橋式起重機重大事故的分析
Analysis of 2 major accidents of bridge crane
事故樹分析又稱為故障樹分析或事故邏輯分析,它是對系統(tǒng)安全性進行定性與定量分析評價的一種科學的和先進的方法,已被廣泛地運用到現(xiàn)代設計的多個領域之中。事故樹分析評價是運用由事件符號和邏輯符號組成的一種圖形模式,來分析人機系統(tǒng)中導致災害事故的各種因素之間的因果關系和邏輯關系,從而判明系統(tǒng)運行當中,各種事故發(fā)生的途徑和重點環(huán)節(jié),為有效地控制,提供一個簡潔而形象的途徑。在作業(yè)過程中,由于人的失誤、機器故障、環(huán)境影響,隨時都有可能發(fā)生不同程度的事故。為了不使這些事故導致災害性后果就要對系統(tǒng)中可能發(fā)生事故的各種不安全因素進行分析和預測,以采取相應的措施和手段來防止和消除危險。因此一個系統(tǒng)的事故分析應包括:系統(tǒng)可能發(fā)生災害事故,也稱為頂上事件;系統(tǒng)內固有的或潛在的事故因素,包括人、機器、環(huán)境因素;各個子系統(tǒng)及各因素之間的相互聯(lián)系與制約關系,即輸入—輸出的因果邏輯關系,并用專門的符號表示;計算系統(tǒng)的頂上事件的發(fā)生概率,進行定量分析與評價。
Fault tree analysis and analysis of fault tree analysis or accident logic, it is for the qualitative and quantitative analysis and evaluation of the security of the system is a scientific and advanced method, has been widely applied to many fields of modern design. Fault tree analysis evaluation is the use of a graphical model consisting of event symbols and symbolic logic, to analyze the causation and the logical relationship between the various factors causing disasters in man-machine system, so as to ascertain the system operation, approach and key links of various accidents, in order to effectively control, provides a concise and vivid the way. In the course of the operation, due to errors, machine failure, environment influence people, may occur at any time of the accident. In order not to make these accidents lead to disastrous consequences will be unsafe for the various possible accident system of factor analysis and prediction, to take corresponding measures and means to prevent and eliminate the risk of. Therefore, a systematic analysis of accident should include: the system may occur accident, also known as the top event; factors in the system inherent or potential accidents, including man, machine, environment factors; between each subsystem and each factor mutual connection and restriction, namely the input - output of the causal relation, and is represented by special symbols; the happening probability of the top event system, analysis and quantitative evaluation.
2.1事故樹分析程序
把事故樹的分析過程采用1個系統(tǒng)圖形建立起來,如圖1所示。
?
2.2事故樹的建立
2.2.1建立事故樹圖
頂上事件:吊物擠、撞打擊傷害。吊車事故圖見圖2。
2.2.2事故樹分析
事故樹的割集:
?
事故樹的徑集:
?
2.3結構重要度計算
導致頂事件發(fā)生的基本事件很多,在采取防止頂事件發(fā)生措施時應該分清輕重緩急,優(yōu)先解決那些比較重要的問題,首先消除或控制那些對頂事件影響重大的基本事件。在故障樹分析中,用基本事件重要度來衡量某一基本事件對頂事件影響的大小。基本事件的結構重要度取決它們在故障樹結構中的位置。評價基本事件結構重要度的方法:根據基本事件在最小割集中出現(xiàn)的情況評價在由較少基本事件組成的最小割集合中出現(xiàn)的基本事件,其結構重要度較大;在不同最小割集合中出現(xiàn)次數多基本事件,其結構重要度大??砂聪率接嬎愕?個基本事件的結構重要度:
?
式中k——故障樹包含的最小割集數目;
m——包含第i個基本事件的最小割集數目;
Rj——包含第i個基本事件的第j個最小割集中基本事件的數目。
采用事故樹分析軟件得出該事故樹的結構重要度順序為:
I(17)>I(14)=I(15)=I(16)>I(8)=I(12)=I(6)=I
(7)=I(9)=I(10)=I(11)=I(13)=I(2)=I(3)=I(4)=I